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Abstract-Heat transfer correlation for the steady-state natural convection in a meniscus-shaped cavity 
was established. It was aimed at providing more accurate data for the contact melting processes in both 
cylindrical and spherical geometries. A closed-form exact conduction solution was also presented for 
the cylindrical case. It was found that normalized circumferential distribution of Nusselt number was 
approximately NM/NM, _ cos I$, which confirmed successfully the shape-preserving character of the top 
solid surface. A sample application revealed that the convection melting in a cylindrical enclosure was 
estimated somewhat higher than that analyzed in the previous study. Admitting that natural convection is 
of secondary importance during contact melting, the present heat transfer correlation, combined with the 
elegant lubrication theory available elsewhere, would provide a more accurate prediction without solving 

complicated governing equations case by case. Copyright 0 1996 Elsevier Science Ltd. 

INTRODUCTION 

When a cylindrical enclosure or spherical capsule con- 
taining a phase-change medium is used as a thermal 
storage unit, the inward melting normally proceeds in 
such a way that the unmelted solid core is con- 
tinuously moving downward within its own melt on 
account of gravity, thereby creating a thin liquid film 
layer between the core and the enclosing wall. Mean- 
while, an ever-widening liquid pool develops above 
the solid core as melting continues. Such a contact 
melting process basically involves two distinct heat 
transfer modes; conduction in the film region and 
natural convection in the liquid pool. Based on that, 
the conduction across the film layer is of primary 
importance. Bareiss and Beer [l] made an excellent 
analysis of contact melting in a cylindrical enclosure 
applying the lubrication theory. Similar studies are 
available for spherical geometries as well [24]. The 
role of natural convection in the liquid pool has been 
considered also, either by an empirical approximation 
[l] or by solving the Boussinesq-approximated Nav- 
ier-Stokes equations [3,5]. These analyses are based 
on the experimental observation that the top solid 
surface remains at its original circular (or spherical) 
shape over the entire melting process, i.e. the shape- 
preserving character of the top solid surface has been 
observed. 

In this study, steady-state natural convection solu- 
tions in a meniscus-shaped cavity (enclosed by two 
surfaces of same radius R) were obtained for both 
cylindrical and spherical geometries. Also, a closed- 
form conduction solution in the meniscus cavity was 

presented especially for the cylindrical case, which is 
useful as a reference quantity relative to convection 
solutions. Earlier studies [l, 31 have revealed that the 
liquid flow during the melting process could be con- 
sidered as a series of steady-state natural convection. 
Based on these observations, heat transfer cor- 
relations for meniscus-shaped cavities were presented 
here for both geometries (such correlations may be 
regarded as an analogy to those for concentric cyl- 
indrical or spherical cavities). Finally as an illus- 
tration, the correlation for cylindrical case was com- 
bined with the previous analysis [I] to further examine 
the relative importance of convective top melting to 
the overall melting. 

PROBLEM DESCRIPTION 

A schematic of the problem considered is depicted 
in Fig. 1. A meniscus-shaped cavity is enclosed by two 
surfaces of same radius of curvature, R. The outside 
wall is heated isothermally at a temperature T,, and 
the top solid surface is at a fixed temperature of Tf. 
In the present work, steady-state natural convection 
occurring in this meniscus-shaped cavity is analyzed 
to give an approximate, but acceptable, heat transfer 
correlation. 

The conventional steady-state Boussinesq-approxi- 
mated governing equations for melting problems are 
employed, where the dimensionless parameters are 

Ra = gB(Tw - TM3 SO 

Vtl 
so* = - 

2R (1) 

and the phase change material under consideration is 
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NOMENCLATURE 

Nusselt number, q”R/k( T, - Tr) 
Nusselt number at 4 = 0 (Fig. 1) 
Prandtl number 
radius 
Rayleigh number 
apparent melting distances 
fusion temperature 
wall temperature. 

4 polar angle (Fig. 1) 
430 tansformed coordinates for 

conduction analysis. 

Superscripts 
* dimensionless quantity (divided by 

2R) 
spherical geometry. 

Greek symbols 
a(4) melting distance measured radially 
E cut-line thickness 

Subscripts 
C convection dominant 
K conduction dominant. 

n-octadecane (here, Pr = 50). It is assumed that the 
natural convection in the liquid pool during the con- 
tact melting can be approximated with a series of 
steady-state solutions corresponding to each ~8. 

For computation, no-slip and isothermal con- 
ditions are imposed, both on the enclosing wall and 
on the top solid surface. Along the line of symmetry, 
adiabatic and full-slip conditions are used. Since a 
singularity can exist if the two isothermal surfaces are 
in contact with each other, a small cut-line is arbi- 
trarily introduced, as illustrated in Fig. 1. For con- 
venience, no-slip and adiabatic conditions are applied 
at this cut-line, which implies the occurrence of a 
linear temperature profile as well as the insignificance 
of flow effect near the cut-line. This approach was 
justifiable because the effect of varying a (i.e. the length 
of cut-line) from c = O.OlR to 0.03R is found to be 
noticeable only in the vicinity of the cut-line. For both 
cylindrical and spherical geometries, heat transfer cor- 
relations are obtained by analyzing numerical results 
for Ra = lo’, 106, IO7 and various sg. A detailed com- 
putational procedure can be found elsewhere [6]. 

Fig. 1. Schematic representation of the meniscus-shaped 
enclosure. 

RESULTS AND DISCUSSION 

Closed-form solution for conduction cuse 
For the cylindrical geometry, an analytical solution 

can be obtained using the following conformal map- 
ping [7]: 

;+iO = In c x+x,-i(y-y,) 

.x - X, + i(_V -_v,) 1 ’ 
(2) 

where [ = In (r2/rI) and 0 designates the subtended 
angle, i.e. 0 = LCPD (see Fig. 2). The two surfaces 
of the cylinder wall and solid-top are then mapped 
onto two horizontal lines in the (<, 0) plane, as shown 
in Fig. 2. Note that the conduction solution in the 
([, fI) plane is simply a linear profile. This means that 
a set of points with the same subtended angle lie on an 
isotherm in the physical plane. Therefore, the steady- 
state conduction solution can be written as 

(3) 

where, from the geometrical relation, 0, = cos-’ st 
and f& = n - 0,. The local Nusselt number of the top 
solid surface at 4 = 0 then can be found by differ- 
entiating equation (3), and rearranging yields 

Nu, = W&on~ = & cot ((3, /2). (4) 
z I 

This expression will be used in quantifying the sig- 
nificance of natural convection relative to conduction 
and in establishing a general heat transfer correlation. 

Cylindrical case 
An earlier elegant analysis of Bareiss and Beer [I] 

mainly considered conduction melting over the thin 
film layer, while natural convection was treated with 
an empirical relation, Nu,, = 0.2R@. However since 
the influence of the natural convection on the heat 
transfer is a strong function of gap width s$, it is 
necessary to build up a proper heat transfer cor- 
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tj=cp 
r, =DP 

9 = LCPD 

(a) (b) 
Fig. 2. Transformation used for exact conduction solution: (a) physical domain, (b) transformed domain. 

relation to more accurately handle the influence of 
natural convection. By analyzing our numerical 
results and using a canonical form similar to that in 
Gobin and Benard [8], the following correlation was 
established: 

Nu, = Nu, + (Nut - Nu,) 2 -12 x 1+ 
[ ( 

1 

0.22Ra’ O4 *30*4.’ ’ )I (5) 

where Nuk is given by equation (4) and Nut is curve- 
fitted into 

Nut = 0.33Ra”“. (6) 

In the above, NM,, represents the local Nusselt num- 
ber of the top solid surface at 4 = 0 (see Fig. 1). 

Figure 3 displays how well the heat transfer cor- 
relation fits with the numerical results for various sg. 
It is interesting to note that there exists an extremum 
near s$ g 0.1 at high Ra. This arises from a compro- 
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Fig. 3. Numerical results for the local Nusselt number and 
the corresponding correlation for the cylindrical geometry. 

mise between two conflicting facts; as so* increases, 
natural convection tends to intensify, whereas the 
thermal stratification is more pronounced. In all cases, 
NuO is nearly close to an asymptote of Nut when sg* 
> 0.2. Since the magnitude of Nuo corresponds to the 

rate of convective top melting, the presence of Nu,- 
asymptote substantiates the experimental observation 
that the melting distance at the top varies almost lin- 
early with time [l]. However, it is noted that our Nu, 
differs by a constant from that employed in Bareiss 
and Beer [l]. Prasad and Sengupta [S] also gave a 
similar remark on this point, but made no attempt to 
present heat transfer correlations. 

Next, by denoting d(4) the radial melting distance 
of the top solid surface, it can be inferred from the 
geometrical constraint that shape-preserving will 
occur if 

for both cylindrical and spherical cases. Since NM is 
proportional to daldt, this can be rephrased so that 
NulNu, = cos 4 when the top solid surface retains its 
circular (or spherical) shape. Our numerical results 
for the circumferential distribution of Nu are therefore 
plotted in Fig. 4 after normalized by NuO. Consistent 
with the foregoing discussion, the collection curves of 
NulNuO for various sf nearly coincide with the cos 4 
curve with 4 < 10”. It is noted that the maximum 
deviation was below 10% for a range of 4 < &./2 (i.e. 
half of the top solid surface). The results in Fig. 4 
therefore explain, within the first approximation, the 
cause of shape-preserving behavior observed exper- 
imentally [ 1,9]. 

Spherical case 
In a manner similar to the cylindrical case, the heat 

transfer correlation for natural convection is 
developed as 
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Fig. 4. Normalized circumferential distribution of the Fig. 5. The melting distance 6* (0) due to natural convection 
local Nusselt number at the top solid surface to explain the from the present study and Bareiss and Beer [l], where Ste, 
shape-preserving behavior; solid lines for cylindrical case and Ar and Fo represent the Stefan, Archimedes and Fourier 

dotted lines for spherical case numbers, respectively, defined as in ref. [l]. 

Nub = Nu; + (Nu; - Nu’,) 

1 

0.059Ra’ 655 *sg*2.s6 
(8) 

However an exact conduction solution was not 
attempted for this case; instead, an analogy was 
derived from the numerical results such that 

and 

(9) 

Nu’ c = 0.51Ra’14. (10) 

For this spherical case, agreement between the 
numerical results and the correlation is found to be 
equivalent to that shown in Fig. 3. It is noted that, 
since the rate of decrease in the unmelted volume to 
that of the contact area is much higher for spherical 
geometry, both Nu& and N& are at larger values. This 
is indeed consistent with the fact that a spherical 
geometry is advantageous over a cylindrical one, from 
the standpoint of energy storage efficiency. 

A sample application 
As an illustrative example, the heat transfer 

correlation is then incorporated into the analysis of 
Bareiss and Beer [l] to evaluate and compare the 
portion of top melting due to natural convection. Fig- 
ure 5 shows the results from our new correlation and 
those of Bareiss and Beer [l]. It is evident that the 
predictions from the two analyses are all above that 

Bareiss and Beer (1984) 
Experiment 

- -A- - Analysis 

based on conduction only. While the experimental 
data of Bareiss and Beer [l] agree favourably with 
their prediction, our new correlation overestimates the 
convective top melting, being about 15% of the total 
melting. This is due mainly to the difference in esti- 
mating Nu, in two studies. A similar analytical inves- 
tigation with spherical geometry [3] also has a trend of 
overestimation when compared with the experimental 
data [9]. 
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